NUMERICAL METHODS

Roots of Transcendental equations

- An equation or formula involving transcendental functions.
- Examples of transcendental functions include the exponential function, the trigonometric functions, and the inverse functions of both.

$$y = \tan x$$
 $y = bx \cdot \cos x$

Successive approximations

Solutions to TE

• Newton Raphson method

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

• Regula falsi method

$$x_2 = a_1 - \frac{f(a_1)}{f(b_1) - f(a_1)}(b_1 - a_1)$$

start Input interval endpoints a and b Input desired accuracy condition Compute f(a) and f(b) Once again NO Checkif f(a)f(b)<0 YES Compute $x = a \cdot [f(a)(b \cdot a)/f(b) \cdot f(a)]$ Compute f(x) YES Print" X is the exact If root of the equation" f(x)=0Back to the loop to find ELSE the next approximation If f(a)f(x) < 0set b=x Else, set a=x Check if desired NO accuracy hasbeen achieved YES Print" X is the exact root of the equation" stop

Flowchart for Regula Falsi method

Regula falsi method

Newton Raphson Method

CURVE FITTING

Best-fitting curve to a given set of points by minimizing the sum of the squares of the offsets of the points from the curve

vertical offsets

perpendicular offsets

The best fit in the least-squares sense minimizes the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided by a model.

Minimizing the Residual

minimize
$$\sum |r_i|$$
 or minimize $\sum r_i^2$
 $ho = \sum_{i=1}^m [y_i - (\alpha x_i + \beta)]^2$

The best fit is obtained by the values of α and β that minimize ρ .

Price (Thousands of \$)	160	180	200	220	240	260	280
Sales of New Homes This Year	126	103	82	75	82	40	20

Residual Error

Regression (Best Fit) Line

The best fit line associated with the *n* points (x1,y1), (x2,y2), (xn, yn) has the form

y=mx+b where

Slope =
$$m = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum (x^2) - (\sum x)^2}$$

Intercept = $b = \frac{\sum y - m(\sum x)}{n}$

x	у	xy	x ²
160	126	20,160	25,600
180	103	18,540	32,400
200	82	16,400	40,000
220	75	16,500	48,400
240	82	19,680	57,600
260	40	10,400	67,600
280	20	5,600	78,400
$\sum x = 1540$	$\sum y = 528$	$\sum xy = 107,280$	$\sum x^2 = 350,000$

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum (x^2) - (\sum x)^2} = \frac{7(107, 280) - (1540)(528)}{7(350, 000) - 1540^2} \approx -0.7929$$

$$b = \frac{\sum y - m(\sum x)}{n} \approx \frac{528 - (-0.7928571429)(1540)}{7} \approx 249.9$$
$$y = -0.7929x + 249.9$$

Least squares line

Coefficient of correlation

Goodness of fit

http://www.zweigmedia.com/RealWorld/calctopic1/regression.html

The least square Parabola

The least square parabola approximating the set of points (X₁,Y₁)...(X_n,Y_n) has the equation:

$$Y = a_0 + a_1 X + a_2 X^2$$

where the constants a0, a1 and a2 are determined by solving simultaneously the equations:

 $\Sigma Y = a_0 N + a_1 \Sigma X + a_2 \Sigma X^2$

 $\Sigma XY = a_0 \Sigma X + a_1 \Sigma X^2 + a_2 \Sigma X^3$

 $\Sigma X^{2}Y = a_{0}\Sigma X^{2} + a_{1}\Sigma X^{3} + a_{2}\Sigma X^{4}$

Gaussian Elimination

Gaussian Elimination

- Solving simultaneous linear equations
- solve a general set of *n* equations and *n* unknowns $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$

Steps to Solve

Gaussian elimination consists of two steps

- 1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each equation starting with the first equation. This way, the equations are *reduced to one* equation and one unknown in each equation.
- 2. Back Substitution: In this step, starting from the last equation, each of the unknowns is found.

Gaussian Elimination

• 1. Triangulation

– Upper triangular matrix

• 2. Back Substitution

INTEGRALS

• Trapezoidal Rule

INTEGRALS

• Simpson's 1/3rd Rule

Gaussian Quadrature

Integration

- Integration is the process of measuring the area under a function plotted on a graph.
- finding the velocity of a body from acceleration functions,
- displacement of a body from velocity data

$$\int_{a}^{b} f(x)dx \cong c_{1}f(a) + c_{2}f(b)$$

= $\frac{b-a}{2}f(a) + \frac{b-a}{2}f(b)$

http://numericalmethods.eng.usf.edu

x

Basis of the Gaussian Quadrature Rule

• The two-point Gauss Quadrature Rule is an extension of the Trapezoidal Rule approximation where the arguments of the function are not predetermined as a and b but as unknowns x₁ and x₂. In the two-point Gauss Quadrature Rule, the integral is approximated as

$$I = \int_{a}^{b} f(x) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2})$$

The four unknowns x_1 , x_2 , c_1 and c_2 are found by assuming that the formula gives exact results for integrating a general third order polynomial,

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} \right) dx$$
$$= \left[a_{0}x + a_{1}\frac{x^{2}}{2} + a_{2}\frac{x^{3}}{3} + a_{3}\frac{x^{4}}{4} \right]_{a}^{b}$$
$$= a_{0}(b-a) + a_{1}\left(\frac{b^{2}-a^{2}}{2}\right) + a_{2}\left(\frac{b^{3}-a^{3}}{3}\right) + a_{3}\left(\frac{b^{4}-a^{4}}{4}\right)$$

Basis of the Gaussian Quadrature Rule

It follows that

$$\int_{a}^{b} f(x) dx = c_1 \left(a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 \right) + c_2 \left(a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3 \right)$$

Equating Equations the two previous two expressions yield

$$a_0(b-a) + a_1\left(\frac{b^2 - a^2}{2}\right) + a_2\left(\frac{b^3 - a^3}{3}\right) + a_3\left(\frac{b^4 - a^4}{4}\right)$$

$$=c_1\left(a_0+a_1x_1+a_2x_1^2+a_3x_1^3\right)+c_2\left(a_0+a_1x_2+a_2x_2^2+a_3x_2^3\right)$$

$$=a_{0}(c_{1}+c_{2})+a_{1}(c_{1}x_{1}+c_{2}x_{2})+a_{2}(c_{1}x_{1}^{2}+c_{2}x_{2}^{2})+a_{3}(c_{1}x_{1}^{3}+c_{2}x_{2}^{3})$$

Basis of the Gaussian Quadrature Rule

Since the constants a_0 , a_1 , a_2 , a_3 are arbitrary

$$b-a = c_1 + c_2 \qquad \frac{b^2 - a^2}{2} = c_1 x_1 + c_2 x_2 \qquad \frac{b^3 - a^3}{3} = c_1 x_1^2 + c_2 x_2^2$$
$$\frac{b^4 - a^4}{4} = c_1 x_1^3 + c_2 x_2^3$$

$$x_{1} = \left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2} \qquad \qquad x_{2} = \left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$

$$c_1 = \frac{b-a}{2} \qquad \qquad c_2 = \frac{b-a}{2}$$

Gauss Quadrature

Two-point Gaussian Quadrature Rule

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} f\left(\frac{b-a}{2}\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right) + \frac{b-a}{2} f\left(\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right)$$

Higher Point Gaussian Quadrature Formulas

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}) + c_{3}f(x_{3})$$

is called the three-point Gauss Quadrature Rule.

The coefficients c_1 , c_2 , and c_3 , and the functional arguments x_1 , x_2 , and x_3 are calculated by assuming the formula gives exact expressions for integrating a fifth order polynomial

$$\int_{a}^{b} \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 \right) dx$$

General n-point rules would approximate the integral

$$\int_{a}^{b} f(x) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2}) + \dots + c_{n} f(x_{n})$$

Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

In handbooks, coefficients and arguments given for n-point Gauss Quadrature Rule are given for integrals

$$\int_{-1}^{1} g(x) dx \cong \sum_{i=1}^{n} c_{i} g(x_{i})$$

as shown in Table 1.

Table 1: Weighting factors c and function arguments x used in Gauss Quadrature Formulas.

Points	Weighting Factors	Function Arguments
2	$c_1 = 1.0000000000000000000000000000000000$	$x_1 = -0.577350269$ $x_2 = 0.577350269$
3	$c_1 = 0.555555556$ $c_2 = 0.888888889$ $c_3 = 0.555555556$	$\begin{array}{rcl} x_1 = -0.774596669 \\ x_2 = & 0.00000000 \\ x_3 = & 0.774596669 \end{array}$
4	$\begin{array}{l} c_1 = 0.347854845 \\ c_2 = 0.652145155 \\ c_3 = 0.652145155 \\ c_4 = 0.347854845 \end{array}$	$ \begin{array}{l} x_1 = -0.861136312 \\ x_2 = -0.339981044 \\ x_3 = 0.339981044 \\ x_4 = 0.861136312 \end{array} $

Arguments and Weighing Factors

The table is given for $\int_{-1}^{1} g(x) dx$ integrals, how does one solve $\int_{a}^{b} f(x) dx$?

The answer lies in that any integral with limits of [a, b]

can be converted into an integral with limits

Let
$$x = mt + c$$

If $x = a$, then $t = -1$
If $x = b$, then $t = -1$
Such that: $m = \frac{b-a}{2}$

[-1, 1]

Then
$$c = \frac{b+a}{2}$$
 Hence $x = \frac{b-a}{2}t + \frac{b+a}{2}$ $dx = \frac{b-a}{2}dt$

Substituting our values of x, and dx into the integral gives us

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right)\frac{b-a}{2}dt$$

http://numericalmethods.eng.usf.edu

35

