
NUMERICAL METHODS



Roots of Transcendental equations 

• An equation or formula involving 
transcendental functions. 

• Examples of transcendental functions include 
the exponential function, the trigonometric 
functions, and the inverse functions of both.



Successive approximations 

Newton-Raphson method.

False Position Method

Bisection Method



Solutions to TE

• Newton Raphson method

• Regula falsi method



Regula falsi 
method





../../2018Jan-May/NM/RF.docx


Newton 
Raphson 
Method
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CURVE FITTING

Best-fitting curve to a given set of points by 
minimizing the sum of the squares of the offsets of 
the points from the curve



The best fit in the least-squares sense minimizes 

the sum of squared residuals, a residual being 

the difference between an observed value and 

the fitted value provided by a model.

the vertical offsets from a 

line are almost always 

minimized instead of the 

perpendicular offsets.



Minimizing the Residual

The best fit is obtained by the values of α and β that 

minimize ρ.





Residual Error



Regression (Best Fit) Line 

The best fit line associated with the n points

(x1,y1),  (x2,y2) ………….., (xn, yn) has the 

form 

y=mx+b where 





Least squares line



Coefficient of 
correlation

http://www.zweigmedia.com/RealWorld/calctopic1/regression.html

Goodness of fit



The least square Parabola

The least square parabola approximating the set 
of points (X1,Y1)…(Xn,Yn) has the equation: 

Y = a0 + a1X + a2X2

where the constants a0, a1 and a2 are determined by 
solving simultaneously the equations:



Straight Line

Parabola
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Gaussian Elimination



Gaussian Elimination

• Solving simultaneous linear equations

• solve a general set of n equations and n 
unknowns



Steps to Solve

Gaussian elimination consists of two steps

• 1. Forward Elimination of Unknowns: In this 
step, the unknown is eliminated in each 
equation starting with the first equation. This 
way, the equations are reduced to one 
equation and one unknown in each equation.

• 2. Back Substitution: In this step, starting from 
the last equation, each of the unknowns is 
found.



• 1. Triangulation

– Upper triangular matrix

• 2. Back Substitution

Gaussian Elimination

Guass elimination.docx


INTEGRALS

• Trapezoidal Rule

trapezoidal.docx


INTEGRALS

• Simpson’s 1/3rd Rule

Simpson.docx


Gaussian  Quadrature



Integration

• Integration is the process of measuring the 
area under a function plotted on a graph. 

• finding the velocity of a body from 
acceleration functions, 

• displacement of a body from velocity data 

http://numericalmethods.eng.usf.edu



• The two-point Gauss Quadrature Rule is an extension of the 
Trapezoidal Rule approximation where the arguments of the 
function are not predetermined as a and b  but as unknowns x1

and x2.  In the two-point Gauss Quadrature Rule, the integral is 
approximated as

Basis of the Gaussian  Quadrature Rule
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The four unknowns x1, x2, c1 and c2 are found by 
assuming that the formula gives exact results for 
integrating a general third order polynomial, 
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Basis of the Gaussian 
Quadrature Rule

It follows that 
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Equating Equations the two previous two expressions yield
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Basis of the Gaussian  Quadrature Rule

Since the constants a0, a1, a2, a3 are arbitrary  
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Gauss Quadrature

Two-point Gaussian Quadrature Rule 
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Higher Point Gaussian Quadrature 
Formulas
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is called the three-point Gauss Quadrature Rule. 

The coefficients c1, c2, and c3, and the functional arguments x1, x2, and x3

are calculated by assuming the formula gives exact expressions for
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Arguments and Weighing Factors  for 
n-point Gauss Quadrature Formulas

In handbooks, coefficients and

Gauss Quadrature Rule are
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as shown in Table 1.

Points Weighting
Factors

Function
Arguments

2 c1 = 1.000000000
c2 = 1.000000000

x1 = -0.577350269
x2 =  0.577350269

3 c1 = 0.555555556
c2 = 0.888888889
c3 = 0.555555556

x1 = -0.774596669
x2 =  0.000000000
x3 =  0.774596669

4 c1 = 0.347854845
c2 = 0.652145155
c3 = 0.652145155
c4 = 0.347854845

x1 = -0.861136312
x2 = -0.339981044

x3 = 0.339981044
x4 = 0.861136312

arguments given for n-point

given for integrals

Table 1: Weighting factors c and function
arguments x used in Gauss Quadrature 
Formulas.
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Arguments and Weighing Factors

The table is given for 
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Substituting our values of x, and dx into the integral gives us
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Gaussian Quadrature 
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